华图教育

退出
4006-01-9999
当前位置 首页 > 考试资讯 > 笔试阶段 > 笔试备考

国考行测数量关系真题破解之“数字特征法”

数量关系题一直是很多考生最为困扰的问题之一,在解题难度上一直处于比较高的状态,复杂的数字关系如何破解?总结多年备考经验,以历年国考真题为个案,为大家系统解析“数字特征法”在破解数量关系题中的运用,让你用最简单的方法拨开谜团,一招破解纷繁复杂的数量关系。 “数字特性法”是指不直接求得最终结果,而只需要考虑最终计算结果的某种"数字特性",从而达到排除错误选项的方法。 掌握数字特性法的关键,是掌握一些最基本的数字特性规律。 (一)奇偶运算基本法则 【基础】奇数±奇数=偶数; 偶数±偶数=偶数; 偶数±奇数=奇数; 奇数±偶数=奇数。 也就是说第一,任意两个数的和如果是奇数,那么差也是奇数;如果和是偶数,那么差也是偶数。第二,任意两个数的和或差是奇数,则两数奇偶相反;和或差是偶数,则两数奇偶相同。 (二)整除判定基本法则 1.能被2、4、8、5、25、125整除的数的数字特性 能被2(或5)整除的数,末一位数字能被2(或5)整除; 能被4(或25)整除的数,末两位数字能被4(或25)整除; 能被8(或125)整除的数,末三位数字能被8(或125)整除; 一个数被2(或5)除得的余数,就是其末一位数字被2(或5)除得的余数; 一个数被4(或25)除得的余数,就是其末两位数字被4(或25)除得的余数; 一个数被8(或125)除得的余数,就是其末三位数字被8(或125)除得的余数。 2.能被3、9整除的数的数字特性 能被3(或9)整除的数,各位数字和能被3(或9)整除。 一个数被3(或9)除得的余数,就是其各位相加后被3(或9)除得的余数。位数多时可选用“划去法”求解。 3.能被11整除的数的数字特性 能被11整除的数,奇数位的和与偶数位的和之差,能被11整除。 (三)倍数关系核心判定特征 如果a∶b=m∶n(m,n互质),则a是m的倍数;b是n的倍数。 如果x=y(m,n互质),则x是m的倍数;y是n的倍数。 如果a∶b=m∶n(m,n互质),则a±b应该是m±n的倍数。 【例1】在招考公务员中,A、B两岗位共有32个男生、18个女生报考。已知报考A岗位的男生数与女生数的比为5:3,报考B岗位的男生数与女生数的比为2:1,报考A岗位的女生数是()。 A.15 B.16 C.12 D.10 [答案]C [解析]报考A岗位的男生数与女生数的比为5:3,所以报考A岗位的女生人数是3的倍数,排除选项B和选项D;代入A,可以发现不符合题意,所以选择C。 【例2】下列四个数都是六位数,X是比10小的自然数,Y是零,一定能同时被2、3、5整除的数是多少?() A.XXXYXX B.XYXYXY C.XYYXYY D.XYYXYX [答案]B [解析]因为这个六位数能被2、5整除,所以末位为0,排除A、D;因为这个六位数能被3整除,这个六位数各位数字和是3的倍数,排除C,选择B。 【例3】某次测验有50道判断题,每做对一题得3分,不做或做错一题倒扣1分,某学生共得82分,问答对题数和答错题数(包括不做)相差多少?() A.33 B.39 C.17 D.16 [答案]D [解析]答对的题目+答错的题目=50,是偶数,所以答对的题目与答错的题目的差也应是偶数,但选项A、B、C都是奇数,所以选择D。【例4】1998年,甲的年龄是乙的年龄的4倍。2002年,甲的年龄是乙的年龄的3倍。问甲、乙二人2000年的年龄分别是多少岁?()A.34岁,12岁 B.32岁,8岁 C.36岁,12岁 D.34岁,10岁 [答案]D [解析]由随着年龄的增长,年龄倍数递减,因此甲、乙二人的年龄比在3-4之间,选择D。 【例5】若干学生住若干房间,如果每间住4人则有20人没地方住,如果每间住8人则有一间只有4人住,问共有多少名学生?()。 A.30人 B.34人 C.40人 D.44人 [答案]D [解析]由每间住4人,有20人没地方住,所以总人数是4的倍数,排除A、B;由每间住8人,则有一间只有4人住,所以总人数不是8的倍数,排除C,选择D。 【例6】一块金与银的合金重250克,放在水中减轻16克。现知金在水中重量减轻1/19,银在水中重量减轻1/10,则这块合金中金、银各占的克数为多少克?() A.100克,150克 B.150克,100克 C.170克,80克 D.190克,60克 [答案]D [解析]现知金在水中重量减轻1/19,所以金的质量应该是19的倍数。结合选项,选择D。 【例7】师徒二人负责生产一批零件,师傅完成全部工作数量的一半还多30个,徒弟完成了师傅生产数量的一半,此时还有100个没有完成,师徒二人已经生产多少个?() A.320 B.160 C.480 D.580 [答案]C [解析]徒弟完成了师傅生产数量的一半,因此师徒二人生产的零件总数是3的倍数。结合选项,选择C。 【例8】一只木箱内有白色乒乓球和黄色乒乓球若干个。小明一次取出5个黄球、3个白球,这样操作N次后,白球拿完了,黄球还剩8个;如果换一种取法:每次取出7个黄球、3个白球,这样操作M次后,黄球拿完了,白球还剩24个。问原木箱内共有乒乓球多少个?() A.246个 B.258个 C.264个 D.272个 [答案]C [解析]每次取出7个黄球、3个白球,这样操作M次后,黄球拿完了,白球还剩24个。因此乒乓球的总数=10M+24,个位数为4,选择C。 【例9】某城市共有四个区,甲区4/13,乙区的人口数是甲区的1/4,丙区人口数是前两区人口数的1/5,丁区比丙区多4000人,全城共有人口多少万?() A.18.6万 B.15.6万 C.21.8万 D.22.3万 [答案]B [解析]甲区人口数是全城的(4/13),因此全城人口是13的倍数。结合选项,选择B。 【例10】小平在骑旋转木马时说:"在我前面骑木马的人数的1/3,加上在我后面骑木马的人数的3/4,正好是所有骑木马的小朋友的总人数。"请问,一共有多少小朋友在骑旋转木马?() A.11 B.12 C.13 D.14 [答案]C [解析]因为坐的是旋转木马,所以小平前面的人、后面的人都是除小平外的所有小朋友。而除小明外人数既是3的倍数,又是4的倍数。结合选项,选择C。

职位数据

学历可报职位分布

更多

招录人数最多的职位

更多
推荐课程
红领决胜A笔面全程协议班B(枣庄)-走读

红领决胜A笔面全程协议班B(枣庄)-走读

红领决胜A笔面全程协议班A(枣庄)-住宿

红领决胜A笔面全程协议班A(枣庄)-住宿

红领决胜A笔试全程营(枣庄)-走读

红领决胜A笔试全程营(枣庄)-走读

免责声明:华图教育提示广大考生,请报考前仔细阅读对应职位招录要求或联系招录单位确认,本职位检索系统提供内容仅供参考。
登录
验证码

*新用户登录即视为注册,账号和初始密码均为手机号,可用于登录华图旗下其他产品.